Syntheses of Palladium(0) and Platinum(0) Olefin Complexes; Molecular Structures of $[Pt(C_2F_4)(C_2H_4)_2]$ and Tris(bicyclo[2.2.1]heptene)platinum

By MICHAEL GREEN, JUDITH A. K. HOWARD, JOHN L. SPENCER, and F. GORDON A. STONE* (Department of Inorganic Chemistry, The University, Bristol BS8 1TS).

Summary The syntheses of $[Pt(C_2F_4)(C_2H_4)_2]$, $[M(C_7H_{10})_3]$ (M = Pd, Pt; C_7H_{10} = bicyclo[2.2.1]heptene), $[Pd(1,5-C_8H_{12})_2]$, $[Pd(C_2H_4)_3 \text{ or }_4]$ and $[ML(C_2H_4)_2]$ (M = Pd, L = PCy₃; M = Pt, L = PMe₃, PCy₃, Cy = cyclohexyl) are described, and a trigonal planar geometry is established for the complexes $[Pt(C_2F_4)(C_2H_4)_2]$, $[M(C_7H_{10})_3]$, and $[Pt(PMe_3)(C_2H_4)_2]$.

RECENTLY we described a new synthesis of bis(cyclo-octa-1,5-diene)platinum and its ready conversion into tris-(ethylene)platinum.¹ We now report structural studies on three-co-ordinate species, and the use of $\text{Li}_2\text{C}_8\text{H}_8$ to prepare tris(bicyclo-2.2.1-heptene)palladium and bis(cyclo-octa-1,5diene)palladium.

From a theoretical study Hoffmann and Rösch² predicted that the complex $[Ni(C_2H_4)_3]$ would adopt a trigonalplanar structure. Structural confirmation of this prediction rested on a single crystal X-ray diffraction study³ of tris(bicyclo[2.2.1]heptene)nickel. Since a structural study of our related $[Pt(C_2H_4)_3]$ presented difficulties, one of the ethylenes was displaced with tetrafluoroethylene in petroleum ether solution to give the more stable species tetrafluoroethylenebis(ethylene)platinum (I) [¹H n.m.r. (CF₃Ph, -25°) τ 6.60 (s with ¹⁹⁵Pt satellites, J_{PtH} 45 Hz), ¹⁹F n.m.r. (C_6D_6 -toluene -30° ; rel. CCl₃F) 123.6 p.p.m. (s with ¹⁹⁵Pt satellites, J_{PtF} 248 Hz), ¹³C n.m.r. (C_6D_6 -toluene; rel. Me₄Si) -65.9 p.p.m. ($^{13}CH_2=CH_2$, 1H decoupled, J_{PtC} 38 Hz) and -100.8 p.p.m. ($^{13}CF_2=CF_2$, ^{19}F decoupled, J_{PtC} 470 Hz); at -80 °C the ^{13}C spectrum was unchanged].

Crystal data: monoclinic, A2/a, Z = 4, a = 8.884(4), b = 7.552(2), c = 12.934(6) Å; $\beta = 109.51(3)^{\circ}$; R = 0.085 for 765 reflections (Syntex P2₁ four circle diffractometer).

The three olefinic double bonds (Figure 1) lie in the co-ordination plane of the platinum atom with Pt-C distances for Pt-C(F₂) and Pt-C(H₂) at 1.97(3) Å and 2.25(3) Å, respectively. Although within 2 e.s.d's of each other at the current stage of refinement the C=C bond lengths reflect the variation in Pt-C distances, being 1.44(4) Å in the co-ordinated C₉F₄ and 1.36(4) in the C₉H₄.

In order to confirm the molecular geometry of the species $[M(olefin)_3]$, tris(bicyclo[2.2.1]heptene)platinum (II) [white crystals, m.p. 144—145° decomp., ¹H n.m.r. (C₆D₆) τ 6.64 (s with ¹⁹⁵Pt satellites, CH=CH, J_{PtH} 64 Hz), 7.04 (s, CH), 8.44 (complex m, $CH_2\cdot CH_2$) and 9.76 (AB system, bridging CH_2); ¹³C n.m.r. (C₆D₆) -28.6 p.p.m. (H-C, J_{PtC} 44 Hz), -39.5 (bridging CH_2 , J_{PtC} 49Hz), -42.8 ($CH_2\cdot CH_2$, J_{PtC} 14 Hz) and -68.0 (CH=CH, J_{PtC} 189 Hz)] was synthesized by treating bis(cyclo-octa-1,5-diene)platinum with bicyclo[2.2.1]heptene, or more directly by reaction of [PtCl₂(1,5-C₈H₁₂)] with Li₂C₈H₈ in Et₂O in the presence of excess bicyclo[2.2.1]heptene.

In the molecular structure of (II) (Figure 2) [Crystal data:

orthorhombic, $P2_12_12_1$, Z = 4, a = 5.720(1), b = 10.740(4), c = 28.771(12) Å; R = 0.106 for 1695 reflections] the double bonds of the three bicyclo[2.2.1]heptene ligands lie in the co-ordination plane of the platinum atom, at a mean Pt-C distance of $2 \cdot 22(3)$ Å. The maximum deviation from this plane is currently 0.06 Å. The bridgehead carbon atoms C(7) and C(21) lie 2.3 Å to one side of this plane, and the third bridgehead carbon C(14) is 2.3 Å on the opposite side, all lying approximately 3.2 Å from the platinum atom. The C=C bonds have a mean bond length of 1.38(4) Å, which is essentially the same as found for co-ordinated ethylene in (I). The remaining C-C bond lengths in the co-ordinated bicyclo[2.2.1]heptene ligands are those expected for singly bonded carbon atoms. The average dihedral angle at the bend of the C_7 rings, *i.e.* between planes C(1), C(2), C(3), C(6) and C(3), C(6), C(5), C(4) etc., is 105°.

FIGURE 1 Molecular structure of $[Pt(C_2F_4)(C_2H_4)_2]$

Reaction (-30°) of $[PdCl_2(1,5-C_8H_{12})]$ with $Li_2C_8H_8$ in Et_2O in the presence of excess bicyclo[2.2.1]heptene gave white crystals of tris(bicyclo[2.2.1]heptene)palladium (III),⁴ stable in the solid state at 0°, except under vacuum. In solution, (III) decomposes to palladium metal unless an excess of ligand is present. Crystals of (III) have the same morphology as the platinum complex (II), and X-ray photographs indicate they are not only isomorphous but also isostructural. Cell constants are almost identical and the space group is also $P2_12_12_1$ with four molecules per unit cell [a = 5.705(1), b = 10.784(5) and c = 28.770(15) Å].

Thus in both of the 3-co-ordinate species (I) and (II) where Pt⁰ is stabilised by olefinic ligands with different steric and electronic requirements, and also in the case of the Pd⁰ complex (III), a trigonal planar structure is preferred.

Reaction (-40°) of $[PdCl_2(1,5-C_8H_{12})]$ with a solution (Et_2O) of $Li_2C_8H_8$ in the presence of excess ethylene and cyclo-octa-1,5-diene gave after filtration and evaporation (low temperature) white crystals of the sparingly soluble

complex bis(cyclo-octa-1,5-diene)palladium(IV).⁴ Treatment of (IV) with bicyclo[2.2.1]heptene gave (III). Ethylene (1 atm., -30°) displaces cyclo-octa-1,5-diene from (IV), as was observed¹ with [Pt(1,5-C₈H₁₂)₂], to give a highly reactive white crystalline complex (V), showing a ¹H n.m.r. resonance ([²H₈]-toluene, -60°) at $\tau \ 6.62(s)$. This complex is probably tris(ethylene)palladium,⁴ although present evidence does not exclude its formulation as [Pd(C₂H₄)₄]. Addition of tricyclohexylphosphine to (V) gave tricyclohexylphosphine-bis(ethylene)palladium (VI) [¹H n.m.r. resonance ([²H₈]-toluene, -35°) at $\tau \ 6.79$ (s, CH₂=CH₂)].

FIGURE 2 Molecular structure of $[Pt(C_7H_{10})_3]$.

A similar reaction with tris(ethylene)platinum and one molar equivalent of tricyclohexylphosphine or trimethylrespectively crystalline complexes, phosphine gave tricyclohexylphosphinebis(ethylene)platinum(VII) [1H n.m.r. (C₆H₆, 35°) τ 7.22 (s with ¹⁹⁵Pt satellites, CH₂=CH₂, JPtH 58 Hz) and 8.42 (br.m)] and trimethylphosphinebis-(ethylene)platinum(VIII) [¹H n.m.r. (C_6H_6 , 35°) τ 7.32 (s with ¹⁹⁵Pt satellites, $CH_2=CH_2$, J_{PtH} 57 Hz) and 8.78 (d with ¹⁹⁵Pt satellites, PMe_3 , J_{PtH} 8.5 Hz, J_{PtH} 21.5 Hz), ¹³C n.m.r. ([²H₈]-toluene, C_2H_4 resonances only, $+30^\circ$) -36.7p.p.m. (s with ¹⁹⁵Pt satellites, J_{PtC} 152 Hz); at -40° two resonances were observed at -33.6 p.p.m. (d with ¹⁹⁵Pt satellites, J_{PC} 15.0 Hz, J_{PtC} 158 Hz) and -38.6 p.p.m. (d with ¹⁹⁵Pt satellites, J_{PC} 6.0 Hz, J_{PtC} 137 Hz)].

These observations show that at room temperature (VIII) [and presumably (VI) and (VII)] is a fluxional molecule, where it is likely the co-ordinated ethylene rotates about an axis through the metal and perpendicular to the C-C bond. The low temperature ¹³C spectrum of (VIII) shows that the 'frozen out' structure is again a trigonal planar arrangement. It is interesting to note that the activation energy for ethylene rotation in (I) is clearly lower than in (VIII).

(Received, 24th March 1975; Com. 353.)

¹ M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, *J.C.S. Chem. Comm.*, 1975, 3. ^a N. Rösch and R. Hoffmann, *Inorg. Chem.*, 1974, 13, 2656. ^a C. Kruger and Y. H. Tsay, Abstracts VIth Internat. Conference Organometallic Chemistry (Amherst) 1973, 80; see K. Fischer Longe and G. Wilke, *Augure Chem. Internat.* 1972, 12, 525

K. Jonas, and G. Wilke, Angew. Chem. Internat. Edn., 1973, 12, 565. ⁴ This complex was obtained using palladium atoms in an independent study by R. M. Atkins, R. Mackenzie, P. L. Timms, and T. W. Turney, to be published.