# Syntheses of Palladium $(0)$ and Platinum(0) Olefin Complexes; Molecular Structures of $\left[\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and Tris (bicyclo[2.2.1]heptene)platinum 

By Michael Green, Judith A. K. Howard, John L. Spencer, and F. Gordon A. Stone* (Department of Inorganic Chemistry, The University, Bristol BS8 ITS).

Summary The syntheses of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right],\left[\mathrm{M}\left(\mathrm{C}_{7} \mathrm{H}_{10}\right)_{3}\right]$ $\left(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \mathrm{C}_{7} \mathrm{H}_{10}=\right.$ bicyclo $[2.2 .1]$ heptene $), \quad[\mathrm{Pd}(1,5-$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right], \quad\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right.$ or 4$] \quad$ and $\quad\left[\mathrm{ML}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Pd}$, $\mathrm{L}=\mathrm{PCy}_{3} ; \mathrm{M}=\mathrm{Pt}, \mathrm{L}=\mathrm{PMe}_{3}, \mathrm{PCy}_{3}, \mathrm{Cy}=$ cyclohexyl) are described, and a trigonal planar geometry is established for the complexes $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right],\left[\mathrm{M}\left(\mathrm{C}_{7} \mathrm{H}_{10}\right)_{3}\right]$, and $\left[\mathrm{Pt}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$.

Recently we described a new synthesis of bis(cyclo-octa1,5 -diene)platinum and its ready conversion into tris(ethylene)platinum. ${ }^{1}$ We now report structural studies on three-co-ordinate species, and the use of $\mathrm{Li}_{2} \mathrm{C}_{8} \mathrm{H}_{8}$ to prepare tris(bicyclo-2.2.1-heptene)palladium and bis(cyclo-octa-1,5diene)palladium.

From a theoretical study Hoffmann and Rösch ${ }^{2}$ predicted that the complex $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$ would adopt a trigonalplanar structure. Structural confirmation of this prediction rested on a single crystal $X$-ray diffraction study ${ }^{3}$ of tris(bicyclo[2.2.1] heptene)nickel. Since a structural study of our related $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$ presented difficulties, one of the ethylenes was displaced with tetrafluoroethylene in petroleum ether solution to give the more stable species tetrafluoroethylenebis(ethylene)platinum (I) $\left[{ }^{1} \mathrm{H}\right.$ n.m.r. $\left(\mathrm{CF}_{3} \mathrm{Ph}\right.$, $\left.-25^{\circ}\right) \tau 6.60$ (s with ${ }^{195} \mathrm{Pt}$ satellites, $J_{\mathrm{P}_{t H}} 45 \mathrm{~Hz}$ ), ${ }^{19} \mathrm{~F}$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{D}_{8}\right.$-toluene $-30^{\circ}$; rel. $\mathrm{CCl}_{3} \mathrm{~F}$ ) $123 \cdot 6$ p.p.m. (s with ${ }^{195} \mathrm{Pt}$ satellites, $J_{\mathrm{PtF}} 248 \mathrm{~Hz}$ ), ${ }^{13} \mathrm{C}$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$-toluene; rel. $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$
-65.9 p.p.m. $\left({ }^{13} \mathrm{CH}_{2}=\mathrm{CH}_{2},{ }^{1} \mathrm{H}\right.$ decoupled, $\left.J_{\text {PtC }} 38 \mathrm{~Hz}\right)$ and $-100 \cdot 8$ p.p.m. $\left({ }^{13} \mathrm{CF}_{2}=C \mathrm{~F}_{2},{ }^{19} \mathrm{~F}\right.$ decoupled, $\left.J_{\mathrm{Ptc}} 470 \mathrm{~Hz}\right)$; at $-80^{\circ} \mathrm{C}$ the ${ }^{13} \mathrm{C}$ spectrum was unchanged].

Crystal data: monoclinic, $A 2 / a, Z=4, a=8.884(4)$, $b=7.552(2), c=12.934(6) \AA ; \beta=109.51(3)^{\circ} ; R=0.085$ for 765 reflections (Syntex P2 four circle diffractometer).
The three olefinic double bonds (Figure 1) lie in the co-ordination plane of the platinum atom with $\mathrm{Pt}-\mathrm{C}$ distances for $\mathrm{Pt}-\mathrm{C}\left(\mathrm{F}_{2}\right)$ and $\mathrm{Pt}-\mathrm{C}\left(\mathrm{H}_{2}\right)$ at $1.97(3) \AA$ and $2 \cdot 25(3) \AA$, respectively. Although within 2 e.s.d's of each other at the current stage of refinement the $\mathrm{C}=\mathrm{C}$ bond lengths reflect the variation in $\mathrm{Pt}-\mathrm{C}$ distances, being $1 \cdot 44(4)$ $\AA$ in the co-ordinated $\mathrm{C}_{2} \mathrm{~F}_{4}$ and $1 \cdot 36(4)$ in the $\mathrm{C}_{2} \mathrm{H}_{4}$.
In order to confirm the molecular geometry of the species [ M (olefin) $)_{3}$ ], tris(bicyclo[2.2.1]heptene)platinum (II) [white crystals, m.p. 144- $145^{\circ}$ decomp., ${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\tau 6.64$ (s with ${ }^{195} \mathrm{Pt}$ satellites, $\mathrm{CH}=\mathrm{CH}, J_{\text {PtH }} 64 \mathrm{~Hz}$ ), 7.04 (s, CH ) 8.44 (complex $\mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$ ) and 9.76 ( AB system, bridging $\mathrm{CH}_{2}$ ) ; ${ }^{13} \mathrm{C}$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-28.6$ p.p.m. (H-C, $J_{\mathrm{PtC}}$ 44 Hz ), $-39 \cdot 5$ (bridging $\mathrm{CH}_{2}, J_{\mathrm{PtC}} 49 \mathrm{~Hz}$ ),$-42.8\left(\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right.$, $\left.J_{\text {Ptc }} 14 \mathrm{~Hz}\right)$ and $\left.-68 \cdot 0\left(\mathrm{CH}=C \mathrm{H}, J_{\mathrm{Ptc}} 189 \mathrm{~Hz}\right)\right]$ was synthesized by treating bis(cyclo-octa-1,5-diene)platinum with bicyclo[2.2.1]heptene, or more directly by reaction of [ $\left.\mathrm{PtCl}_{2}\left(1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$ with $\mathrm{Li}_{2} \mathrm{C}_{8} \mathrm{H}_{8}$ in $\mathrm{Et}_{2} \mathrm{O}$ in the presence of excess bicyclo[2.2.1]heptene.

In the molecular structure of (II) (Figure 2) [Crystal data:
orthorhombic, $P 2_{1} 2_{1} 2_{1}, Z=4, a=5 \cdot 720(1), b=10 \cdot 740(4)$, $c=28.771(12) \AA ; R=0.106$ for 1695 reflections] the double bonds of the three bicyclo[2.2.1]heptene ligands lie in the co-ordination plane of the platinum atom, at a mean $\mathrm{Pt}-\mathrm{C}$ distance of $2 \cdot 22(3) \AA$. The maximum deviation from this plane is currently $0.06 \AA$. The bridgehead carbon atoms $\mathrm{C}(7)$ and $\mathrm{C}(21)$ lie $2 \cdot 3 \AA$ to one side of this plane, and the third bridgehead carbon $\mathrm{C}(14)$ is $2 \cdot 3 \AA$ on the opposite side, all lying approximately $3.2 \AA$ from the platinum atom. The $\mathrm{C}=\mathrm{C}$ bonds have a mean bond length of $1.38(4) \AA$, which is essentially the same as found for co-ordinated ethylene in (I). The remaining $\mathrm{C}-\mathrm{C}$ bond lengths in the co-ordinated bicyclo[2.2.1]heptene ligands are those expected for singly bonded carbon atoms. The average dihedral angle at the bend of the $\mathrm{C}_{7}$ rings, i.e. between planes $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(6)$ and $\mathrm{C}(3), \mathrm{C}(6), \mathrm{C}(5), \mathrm{C}(4)$ etc., is $105^{\circ}$.


Figure 1 Molecular structure of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$

Reaction ( $-30^{\circ}$ ) of $\left[\mathrm{PdCl}_{2}\left(1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$ with $\mathrm{Li}_{2} \mathrm{C}_{8} \mathrm{H}_{8}$ in $\mathrm{Et}_{2} \mathrm{O}$ in the presence of excess bicyclo[2.2.1]heptene gave white crystals of tris(bicyclo[2.2.1]heptene)palladium (III), ${ }^{4}$ stable in the solid state at $0^{\circ}$, except under vacuum. In solution, (III) decomposes to palladium metal unless an excess of ligand is present. Crystals of (III) have the same morphology as the platinum complex (II), and $X$-ray photographs indicate they are not only isomorphous but also isostructural. Cell constants are almost identical and the space group is also $P 2_{1} 2_{1} 2_{1}$ with four molecules per unit cell $[a=5 \cdot 705(1), b=10 \cdot 784(5)$ and $c=28 \cdot 770(15) \AA]$.

Thus in both of the 3 -co-ordinate species (I) and (II) where $\mathrm{Pt}^{0}$ is stabilised by olefinic ligands with different steric and electronic requirements, and also in the case of the $\mathrm{Pd}^{0}$ complex (III), a trigonal planar structure is preferred.

Reaction $\left(-40^{\circ}\right)$ of $\left[\mathrm{PdCl}_{2}\left(1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$ with a solution $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{Li}_{2} \mathrm{C}_{8} \mathrm{H}_{8}$ in the presence of excess ethylene and cyclo-octa-1,5-diene gave after filtration and evaporation (low temperature) white crystals of the sparingly soluble
complex bis(cyclo-octa-1,5-diene)palladium(IV). ${ }^{4}$ Treatment of (IV) with bicyclo[2.2.1]heptene gave (III). Ethylene ( $1 \mathrm{~atm} ., \quad-30^{\circ}$ ) displaces cyclo-octa-1,5-diene from (IV), as was observed ${ }^{1}$ with $\left[\mathrm{Pt}\left(1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$, to give a highly reactive white crystalline complex (V), showing a ${ }^{1} \mathrm{H}$ n.m.r. resonance $\left({ }^{2} \mathrm{H}_{8}\right]$-toluene, $-60^{\circ}$ ) at $\tau \quad 6 \cdot 62(\mathrm{~s})$. This complex is probably tris(ethylene)palladium, ${ }^{4}$ although present evidence does not exclude its formulation as $\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4}\right]$. Addition of tricyclohexylphosphine to (V) gave tricyclohexylphosphine-bis(ethylene)palladium (VI) $\left[{ }^{1} \mathrm{H}\right.$ n.m.r. resonance $\left(\left[{ }^{2} \mathrm{H}_{8}\right]\right.$-toluene, $\left.-35^{\circ}\right)$ at $\boldsymbol{\tau} 6.79$ (s, $\left.\left.\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\right]$.


Figure 2 Molecular structure of $\left[\mathrm{Pt}\left(\mathrm{C}_{7} \mathrm{H}_{10}\right)_{3}\right]$.

A similar reaction with tris(ethylene)platinum and one molar equivalent of tricyclohexylphosphine or trimethylphosphine gave respectively crystalline complexes, tricyclohexylphosphinebis(ethylene)platinum(VII) $\quad\left[{ }^{1} \mathrm{H}\right.$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{H}_{6}, 35^{\circ}\right) \tau 7.22$ (s with ${ }^{195} \mathrm{Pt}$ satellites, $\mathrm{CH}_{2}=\mathrm{CH}_{2}$, $J_{\text {PtH }} 58 \mathrm{~Hz}$ ) and 8.42 (br.m)] and trimethylphosphinebis(ethylene)platinum(VIII) $\left[{ }^{1} \mathrm{H}\right.$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{H}_{6}, 35^{\circ}\right) \tau 7.32$ (s with ${ }^{195} \mathrm{Pt}$ satellites, $\mathrm{CH}_{2}=\mathrm{CH}_{2}, J_{\text {Pth }} 57 \mathrm{~Hz}$ ) and 8.78 (d with ${ }^{195} \mathrm{Pt}$ satellites, $\mathrm{PMe}_{3}, J_{\mathrm{PtH}} 8.5 \mathrm{~Hz}, J_{\mathrm{PtH}} 21.5 \mathrm{~Hz}$ ), ${ }^{13} \mathrm{C}$ n.m.r. ( $\left[{ }^{2} \mathrm{H}_{8}\right]$-toluene, $\mathrm{C}_{2} \mathrm{H}_{4}$ resonances only, $+30^{\circ}$ ) $\mathbf{- 3 6 . 7}$ p.p.m. (s with ${ }^{195} \mathrm{Pt}$ satellites, $J_{\mathrm{Ptc}} 152 \mathrm{~Hz}$ ); at $-40^{\circ}$ two resonances were observed at -33.6 p.p.m. (d with ${ }^{195} \mathrm{Pt}$ satellites, $J_{\mathrm{PC}} 15.0 \mathrm{~Hz}, J_{\mathrm{Ptc}} 158 \mathrm{~Hz}$ ) and -38.6 p.p.m. (d with ${ }^{195} \mathrm{Pt}$ satellites, $\left.\left.J_{\mathrm{PC}} 6 \cdot 0 \mathrm{~Hz}, J_{\mathrm{Ptc}} 137 \mathrm{~Hz}\right)\right]$.

These observations show that at room temperature (VIII) [and presumably (VI) and (VII)] is a fluxional molecule, where it is likely the co-ordinated ethylene rotates about an axis through the metal and perpendicular to the $\mathrm{C}-\mathrm{C}$ bond. The low temperature ${ }^{13} \mathrm{C}$ spectrum of (VIII) shows
that the 'frozen out' structure is again a trigonal planar arrangement. It is interesting to note that the activation energy for ethylene rotation in (I) is clearly lower than in (VIII).
(Received, 24th March 1975; Com. 353.)
${ }^{1}$ M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J.C.S. Chem. Comm., 1975, 3.
${ }^{2}$ N. Rösch and R. Hoffmann, Inorg. Chem., 1974, 13, 2656.
${ }^{3}$ C. Kruger and Y. H. Tsay, Abstracts VIth Internat. Conference Organometallic Chemistry (Amherst) 1973, 80; see K. Fischer K. Jonas, and G. Wilke, Angew. Chem. Internat. Edn., 1973, 12, 565.

4 This complex was obtained using palladium atoms in an independent study by R. M. Atkins, R. Mackenzie, P. L. Timms, and T. W. Turney, to be published.

